

Owner's Manual

Installation

- Use
- Maintenance

General Pump is a member of the Interpump Group

VK SERIES

INDEX

1.		.Page 3
2.	DESCRIPTION OF SYMBOLS	.Page 3
3.	SAFETY3.1 General safety instructions3.2 High pressure unit safety requirements3.3 Safety during operation3.4 General procedures for using lances3.5 Safety during unit maintenance	.Page 4 .Page 4 .Page 4 .Page 4
4.	PUMP IDENTIFICATION	.Page 5
5.		.Page 6
6.	DIMENSIONS AND WEIGHT	.Page 7
7.	OPERATING INSTRUCTIONS 7.1 Water temperature 7.2 Maximum flow and pressure rates 7.3 Minimum RPM 7.4 Recommended lubricant types and manufacturers	.Page 7 .Page 7 .Page 7
8.	PORTS AND CONNECTIONS	
9.	PUMP INSTALLATION 9.1 Installation 9.2 Direction of rotation 9.3 Version Change 9.4 Hydraulic connections 9.5 Pump power supply 9.6 Inlet line 9.7 Filtration 9.8 Outlet line 9.9 Internal diameter of hose 9.10 V-belt transmission 9.11 Transmission definition 9.12 Definition of static pull to apply on belts	.Page 11 .Page 12 .Page 12 .Page 13 .Page 13 .Page 13 .Page 14 .Page 14 .Page 15 .Page 16 .Page 17
10.	START UP AND OPERATION 10.1 Preliminary inspections 10.2 Starting up 10.3 Cooling circuit seal packing	.Page 20 .Page 20
11.	PREVENTATIVE MAINTENANCE	.Page 21
12.	PUMP STORAGE 12.1 Inactivity for lengthy periods 12.2 Filling the pump with anti-corrosion emulsion or anti-freeze 12.2 Hoses	.Page 22 .Page 22
13.	PRECAUTIONS AGAINST FREEZING	.Page 22
14.	WARRANTY TERMS	.Page 22
15	TROUBLESHOOTING	.Page 23
16.	EXPLODED VIEWS AND PARTS	.Page 24
17.	MAINTENANCE LOG	.Page 26

VK SERIES

1. INTRODUCTION

This manual describes the use and maintenance instructions of the VK pump, and should be carefully read and understood before using the pump.

Correct use and adequate maintenance will guarantee the pumps trouble-free operation for a long time. General Pump declines any responsibility for damage caused by misuse or the non-observance of the instructions indicated in this manual.

Upon receiving the pump, check that it is complete and in perfect condition. Should anything be found out of order, please contact us before installing and starting the pump.

2. SYMBOL DESCRIPTIONS

Warning Potential Danger

Read carefully and understand the manual before operating the pump

Danger Wear goggles

Danger Wear protective mask

Danger Wear protective gloves

Da We

Danger Wear protective boots

3. SAFETY

3.1 General Safety Indications

Improper use of pumps and high pressure systems, and/or failure to observe the installation and maintenance instructions may cause serious injury to people and/or damage to property. Anyone assembling or using high pressure systems must possess the necessary competence to do so, should be aware of the characteristics of the components assembled/used, and must take all precautions necessary to ensure maximum safety in any operating condition. In the interest of safety, both for the Installer and the Operator, no reasonably applicable precaution should be omitted.

3.2 High pressure unit safety requirements

- 1. The pressure line must always be equipped with a safety valve.
- 2. High pressure system components, in particular for those units working outside, must be adequately protected against rain, frost and heat.
- 3. The electrical control system must be adequately protected from water spray, and must comply with the specific regulations in force.
- 4. High pressure hoses must be properly sized for maximum operating pressure of the system and always and only used within the operating pressure range specified by the hose manufacturer. The same rules should be observed for all other auxiliary systems affected by high pressure.
- 5. The ends of high pressure hoses must be sheathed and secured to a solid structure to prevent dangerous whiplash in case of bursting or broken connections.
- 6. Appropriate safety guards must be provided for the pump transmission systems (couplings, pulleys and belts, auxiliary drives).

3.3 Safety During Operation

The working area of a high pressure system must be clearly marked. Access must be prohibited to un-authorized personnel and, wherever possible, the area should restricted or fenced. The personnel authorized to access this area should first be trained, and informed about the risks that may arise from failures or malfunctions of the high pressure unit.

Before starting the unit, the operator must verify that:

- 1. The high pressure system is properly fed by a minimum pressure of 75-100 PSI (5-7 Bar), metered in the head flange.
- 2. The pump intake filters are perfectly clean; we recommend the use of a device that indicates the filters clogging level.
- 3. Electrical parts are adequately protected and in perfect condition.
- 4. The high pressure hoses do not show evident signs of abrasion, and that fittings are in perfect shape. Any fault or reasonable doubt that may arise before or during operation should be promptly reported and verified by competent personnel. In these cases, pressure should immediately be released and the high pressure system stopped.

3.4 General Procedures For Using Lances

- 1. The Operator must always place his own and other worker's safety before any other interest; his and should always be governed by good sense and responsibility.
- 2. The Operator must always wear a helmet with a protective visor, waterproof clothing, and appropriate boots capable of guaranteeing grip on wet pavement.

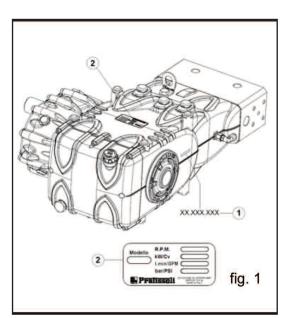
VK SERIES

Note: appropriate clothing will effectively protect against water spray, but it may not offer adequate protection against the direct impact of water jets or sprays from a close distance. Some circumstances may require further protection.

- 3. It is generally best to organize personnel into teams of at least two people capable of giving mutual and immediate assistance in case of necessity and of taking turns during long and demanding operation.
- 4. Access to the work area that is within the water jets' range must be absolutely prohibited to and free from objects that, inadvertently under a pressure jet, can be damaged and or create dangerous situations.
- 5. The water jet must only and always be directed in the direction of the work area, including during testing or preliminary tests or checks.
- 6. The Operator must always pay attention to the trajectory of the debris removed by the water jet. If necessary,
- suitable guards must be provided by the Operator to protect anything that may be accidentally exposed.7. The Operator should not be distracted for any reason during operation. Workers needing to access the operating area must wait for the Operator to stop work, and then immediately make their presence known.
- 8. For safety reasons, it is important that each member of the team is fully aware of the intentions and actions of other team members in order to avoid dangerous misunderstandings.
- 9. The high pressure system must not be started up and run under pressure without all team members in position and without the Operator having already directed his/her lance toward the work area.

3.5 Safety During System Maintenance

- 1. The pressure system maintenance must be carried out in the time intervals set by the manufacturer who is responsible for the whole group according to law.
- 2. Maintenance should always be carried out by trained and authorized personnel.
- 3. Assembly and disassembly of the pump and its various components must be performed exclusively by authorized personnel, using appropriate equipment in order to avoid damage to components and connections.
- 4. Always use original spare parts to ensure total reliability and safety.

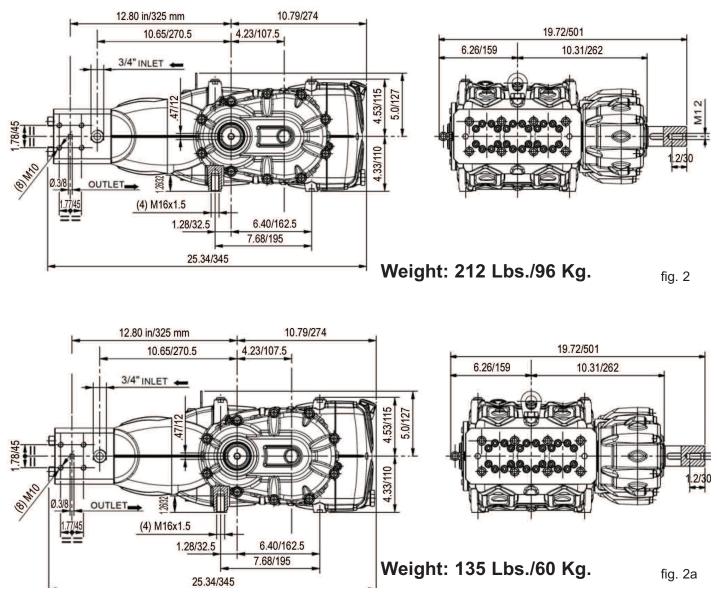

4. PUMP IDENTIFICATION

Each pump has a specific label which contains:

Pump model and version Serial Number Maximum RPM Power - Hp-kW Pressure - PSI Flow Rate - GPM

Pump model, version and serial number must always be specified when ordering spare parts.

5. TECHNICAL FEATURES


	MODEL		FLOW	RATE	PRESSURE		POWER	
WODEL		RPM	GPM	LPM	PSI	BAR	HP	kW
VK12	Version without reduction gear	1200	5.3	20.4	21750	1500	79	59
VIIZ	Version with reduction gear	1500						
		1800						
		2200						
VK14	Version without reduction gear Version without reduction gear	1200	7.4	28	15950	1100	79	59
		1500						59
		1800						
		2200						

VK SERIES

6. DIMENSIONS AND WEIGHT

For dimensions and weight of reduction gear unit version, please refer to fig. 2. For dimensions and weight of version without reduction gear unit, please refer to fig. 2a.

7. OPERATING INSTRUCTIONS

The VK pump was designed to operate with filtered water (see paragraph 9.7) and at maximum temperature of 86° F (30° C).

Other fluids may be used only upon the approval of The Customer Service Department .

7.1 WaterTemperature

The max water temperature is 86° F (30° C). However, it is possible to use the pump at temperatures of up to 140°F (60°C) for short periods of time. In this case we advise consulting the Customer Service Department.

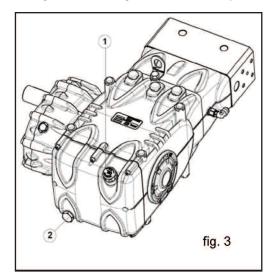
7.2 Max Flow Rate and Pressure Values

The performance values indicated in the catalog refer to the maximum performance of the pump. Regardless of the power used, pressure and maximum RPM values indicated on the plate may not be exceeded unless expressly authorized by the **Customer Service Department**.

7.3 Lowest RPM

Any RPM value different from what is indicated in the performance table (see chapter 5) must be explicitly authorized by the **Customer Service Department**.

7.4 Recommended Lubricant Oil Types & Manufacturers

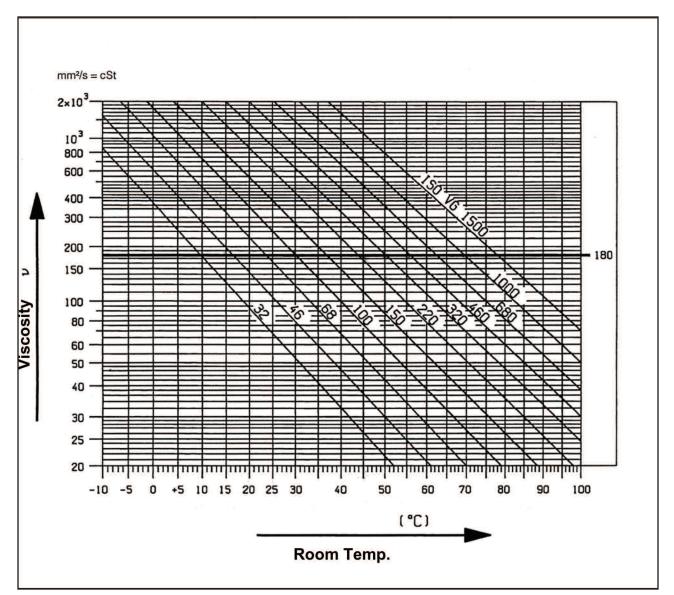

The pump is delivered with lubricant oil compliant with room temperatures ranging between 32° and 89.6° F (0° and 30°C). Some recommended lubricant types are indicated in the table below; these lubricants are treated with additives in order to increase corrosion protection and resistance to fatigue. As an alternative, Automotive SAE 85W-90 gearing lubricants may also be used.

BRAND	TYPE
GENERAL PUMP	SERIES 220
ARAL	Aral Degol BG220
BP	ENERGOL HLP 220
CASTROL	Hyspin VG 220, Magna 220
ELF	POLYTELIS 220
ESSO	NUTO 220
FINA	Cirkan 220
FUCHS	RENOLIN 220
MOBIL	DTE OIL BB
SHELL	TELLUS C 220
TEXACO	RANDO HD 220
TOTAL	CORTIS 220

Check the oil level with the oil level lights located on the sides (1, fig. 3). If necessary, top off via the oil plug (3, fig. 3).

To correctly check the oil level the pump must be at ambient temperature. To change the oil the pump must be at operating temperature, and is done by removing the plug (2, fig. 3).

Checking and changing the oil must be done as shown in Chapter 11. The quantity necessary is 162.3 oz. (4.8 liters)for versions with a reduction gear in positions 1 and 4 (fig. 6). Said quantity will be slightly lower for positions 2 and 3. Quantity of oil for version withoug a reduction gear is 148.8 oz. (4.4 liters).

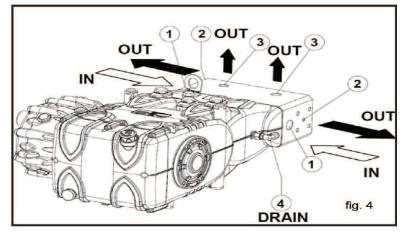


In any case, oil must be changed at least once a year since it may deteriorate by oxidation.

For room temperatures that differ from that mentioned earlier, follow the indications contained in the diagram below, keeping in mind that the oil must have a minimum viscosity of 180 cSt.

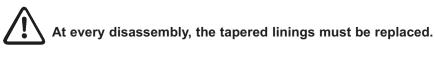
VISCOSITY/ROOM TEMPERATURE DIAGRAM

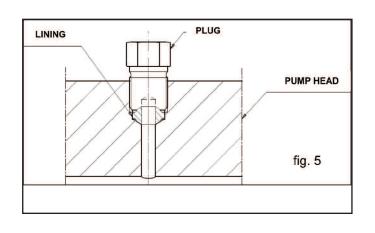
Exhausted oil must be collected in an appropriate container and disposed of in appropriate locations. Do not under any circumstances discard it into the environment.

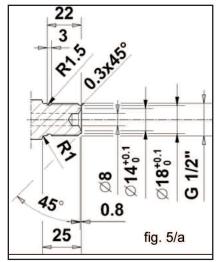


VK SERIES

8. PORTS AND CONNECTIONS


VK Series pumps are equipped with (see fig. 4):


- 1. 2 inlet ports "IN", 3/4" BSP-F. The line can be connected to either of the two inlet ports; the ones not being used must be hermetically sealed.
- 2. 2 outlet ports "OUT", Ø 1/2" BSP-Flange.
- 3. 2 service ports, 1/2". These can be used for the pressure gauge and the safety valve.
- 4. 1 drain port "DRAIN" supplied with a 90o adjustable quick coupling for polyamide hoses with Ø of 10 mm. These serve to recover drainage of the seal pack cooling circuit and must be connected to the discharge making sure there is no back pressure.



8.1 Linings/Nose Cones

VK pumps are provided with 4 steel tapered linings for use in the corresponding outlet ports of the pump (see fig. 5) or in the optional connection flanges, to ensure the connection seal. While the seat of the pump's outlet port is already machined hole the tapered lining, whenever outlet fitting or closing plug attachment is necessary, these will have to be processed as indicated in fig. 5a.

9. PUMP INSTALLATION

9.1 Installation

The pump must be fixed horizontally using the M16x1.5 threaded support feet. Tighten the screws with a torque of 155 Ft.Lb. (210 Nm). The base must be perfectly flat and rigid enough as not to allow bending or misalignment on the pump coupling axis/transmission due to torque transmitted during operation.

The unit cannot be fixed rigidly to the floor must must be protected with vibration dampeners. For special applications contact the Customer Service Department.

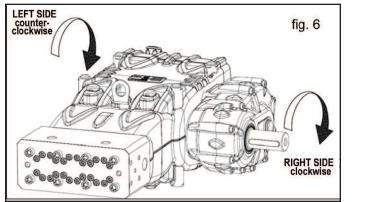
A lifting bracket is mounted on the pump for easy installation, as per the figure below.

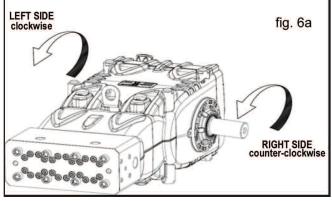
Replace the oil plug (red) positioned on the rear casing cover. Check the correct quantity with the oil dipstick.

The oil dipstick must always be reachable, even when the unit is assembled.

The pump's shaft (PTO) must not be rigidly connected to the motor unit.

The following transmission types are suggested:


- Flexible joint
- · Cardan Joint (please respect the maximum working angles indicated by the manufacturer)
- · V-belts, only allowed on versions without a reduction gear



9.2 Direction of rotation

The PTO rotation is indicated by an arrow located on the casings. From a position facing the pump head, the rotation direction will be:

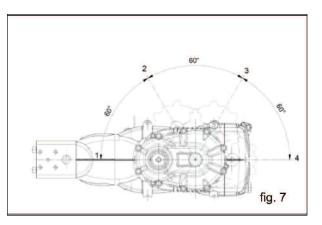
- As per fig. 6 for versions with a reduction gear
- As per fig. 6a for versions without a reduction gear

9.3 Version Change

The pump version is defined at right when observing the pump facing the head, the pump shaft must have a PTO shaft on the right.

The pump version is defined as left when observing the pump facing the head, the pump shaft must have a PTO shaft on the left.

NOTE: the versions shown in fig. 6 and 6a are right.


The version can only be modified by trained and authorized personnel and carefully following the instructions below:

- 1. Separate the hydraulic part from the mechanical part as indicated in point 2.2.1 of the repair manual.
- 2. Turn the mechanical part 180° and reposition the rear casing cover in such a way that the oil dipstick is turned upward. Reposition the lifting bracket and relative drain plugs in the upper part of the casing. Finally, properly reposition the specification label in its housing on the casing.

Make sure that the lower casing draining holes in correspondence with the plungers are open and not closed from the plastic plugs provided for the previous version.

3. Separate the hydraulic part from the mechanical part as indicated in point 2.2.2 of the repair manual.

It is also possible to place the reduction gear in 4 different positions as per fig. 7

The reduction gear position can only be modified by trained and authorized personnel carefully following directions contained in the repair manual. Ref 300837 Rev.C 04-16

9.4 Hydraulic Connections

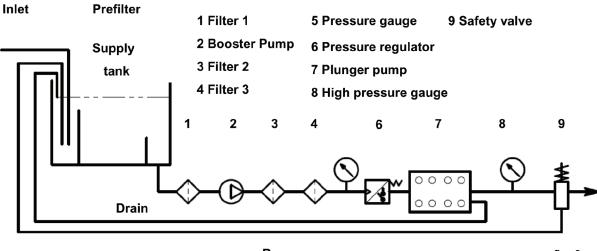
To isolate the system from the vibrations produced by the pump, we recommend building the first section of hose adjacent to the pump (for both intake and outlet) with flixible hose. The solidity of the intake section must be enough to prevent deformation caused by the depression produced by the pump.

9.4 Pump Power Supply

VK pumps require a positive water head (NPSH_r) of between 75-100 PSI (5-7 Bar) at the pump head entrance. The booster supply pump must have a flow rate at least double that of the rated flow rate of the plunger pump, and a minimum pressure of 75 PSI (5 bar). These supply conditions must be respected for any and all working regimes. The booster pump must be run independent of the plunger pump.

The booster pump must always be started before the plunger pump. We recommend installing a pressure switch on the supply line downstream of the filters, to protect the pump.

9.6 Suction Line


For the pump's correct operation, the suction line must have the following characteristics:

- 1. Minimum internal diameter as indicated in the diagram in paragraph 9.9 and in any case equal or greater than the pump head's value. Along the duct, avoid localized diameter reductions that may cause pressure drops with subsequent cavitation. Absolutely avoid 90° elbows, connections with other hoses, bottlenecks, counter-slopes, upside down "U" shaped curves, "T" connections.
- 2. With a layout that is set in such a way to prevent cavitation.
- 3. It should be perfectly airtight, and built in a way that guarantees perfect sealing over time.
- 4. Avoid pump emptying when stopping (even partial emptying).
- 5. Do not use hydraulic fittings, 3 or 4 way fittings, adapters, etc., since they may hinder the pump's performance.
- 6. Do not install Venturi tubes or injectors for detergent intake.
- 7. Avoid the use of standing valves, check valves, or any other type of one-way valves.
- 8. Do not connect the by-pass line from the valve directly to the pump suction line.
- 9. Provide appropriate baffle plates inside the tank in order to avoid water flows coming from both the by-pass and feeding lines may create turbulance near the tank's outlet port.
- 10. Make sure that the suction line is perfectly clean inside before connecting it to the pump.
- 11. The pressure gauge for checking booster pressure must be installed near the plunger pump's outlet port, and always downstream from the filters.

9.7 Filtration

The level of filtration permitted for this series of pumps must be maximum 20 µm (micron). Normally this is obtained by a battery of at least three filters, positioned as shown in fig. 7.

Bypass

fig. 8

The filters must be installed as close as possible to the pump. They must be easily accessible for inspection and must have the following specifications:

- 1. Minimum flow rates at least 3 times the nominal flow rate of the pump.
- 2. Inlet/outlet port diameters no smaller than the inlet port diameter of the pump.
- 3. Filtration degree:

Filter number 1: 250 µm Filter number 2: 100 µm Filter number 3: 20 µm

In order to guarantee correct pump operation, it is important to plan periodical cleaning of the filter depending on actual pump usage, water quality and actual clogging conditions.

To guarantee the supply pressure required (see 9.5) install a pressure regulator.

9.8 Outlet Line

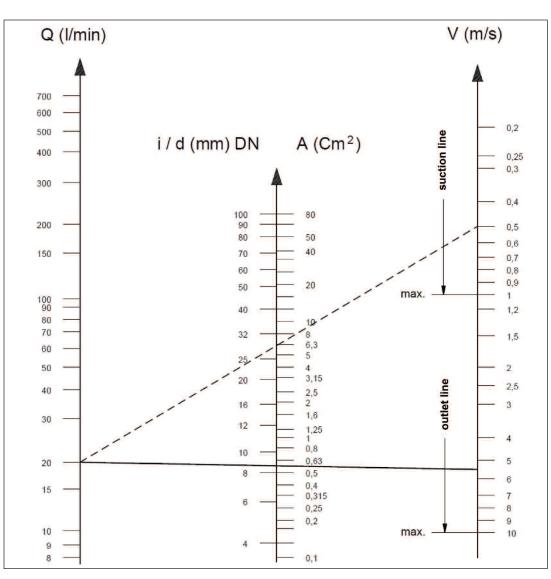
To obtain a correct delivery line, please comply with the following installation instructions:

- 1. The internal diameter of the pump must allow to guarantee correct fluid speed; see digram in paragraph 9.9
- 2. The first section of the hose connected to the pump must be flexible in order to isolate pump vibrations from the rest of the system.
- 3. Use high pressure hoses and fittings that guarantee wide safety margins in any working condition.
- 4. Install a safety valve on the delivery line.
- 5. Use pressure switches suitable for the pulsating loads typical of plunger pumps.
- 6. In the design phase, take into proper account the pressure drop along the line, since this causes a reduction in usage pressure with respect to the value measured at the pump.
- 7. If the pump pulsations are harmful for particular applications, install an appropriately sized pulsation dampener on the outlet line.

9.9 Internal Diameter of the Hose Line

To determine the internal diameter of the hose, please refer to the following diagram.

Inlet Hose


With a flow rate of ~5.3 GPM (20 l/mn) and water speed of 0.5 m/sec. The diagram line that connects the two scales intersects the central scale, indicating the diameters, at a value of ~ 1.1 inch (28 mm).

Outlet Hose

With a flow rate of ~5.3 GPM (20 l/mn) and water speed of 5.5 m/sec. The diagram line that connects the two scales intersects the central scale, indicating the diameters at a value of ~ .3 inch (8.5 mm).

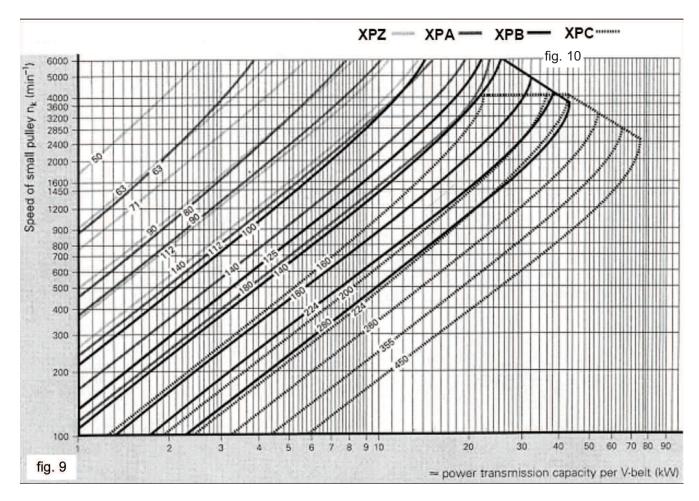
Optimal speed to be obtained with the booster pump:

- Suction: ≤ 0.5 m/sec.
- Delivery: ≤ 5.5 m/sec.

The diagram does not take into account the hose and valve resistance, the pressure drop due to the pipe length, the viscosity and the temperature of the pumped fluid. If necessary, contact our Customer Service Department.

9.10 V-belt Transmissions

V-belt transmission is only allowed on versions without a reduction gear.


For this pump model, we recommend use of 4 XPB belts (16.5 x 13 serrated). Use an XPC profile only for long durations. Both the characteristics and transmissible power of each belt can be verified in the diagram in fig. 9, in relation to the number of RPM normally declared by the manufacturer.

Minimum duct pulley diameter (on pump shaft): ≥ 250 mm.

The radial load on the shaft must not exceed 7,500 N (value necessary for Layout definition). The transmission is considered adequate if the load is applied to a maximum distance a=40 mm from the shaft shoulder (PTO) as shown in fig. 12.

\triangle

For dimensions differing from those specified above, contact our Customer Service Department.

Ref 300837 Rev.C 04-16

Page 16

9.11 Transmission Definition

To prevent irregular radial loads on the shaft and the relative bearing, follow these directions:

a) Use pulleys with v-belts with the size of the groove required/recommended by the manufacturer of belt used. In the absence or directions, follow fig. 10 and the table in fig. 11.

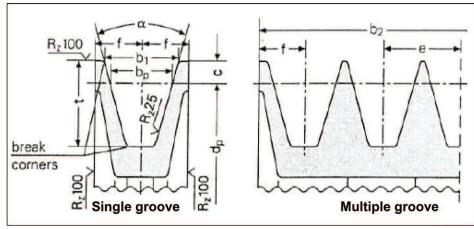
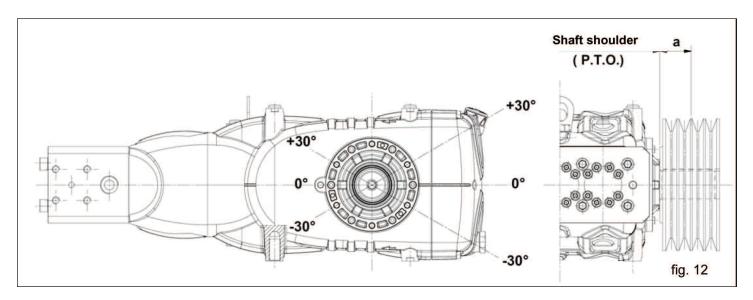


fig. 10


Dimensions in mm

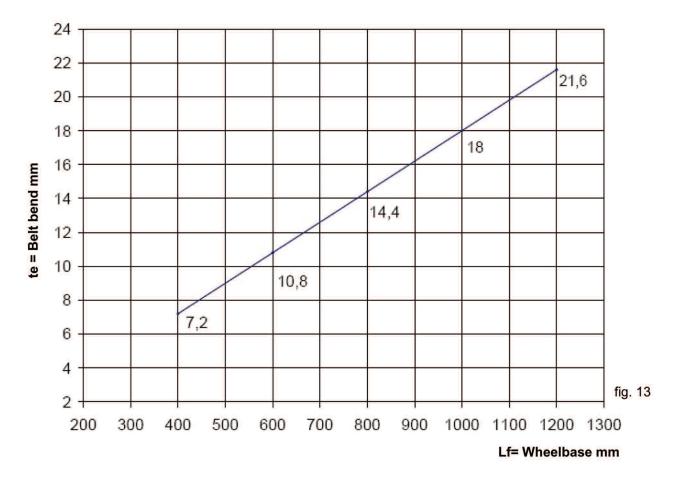
Belt section as per	DIN symbol		XPB/SPB	XPC/SPC
DIN 7753 part 1 and B.S. 3790	symbol B.Š./ISO		SPB	SPC
Belt section as per	DIN symbol		17	22
DIN 2215 and B.S. 3790	symbol B.S./ISO		В	С
Pitch width	b_w	,	14.0	19.0
Increased grooving width b₁ ≈	$\alpha = 34^{\circ}$		18.9	26.3
	α = 38°		19.5	27.3
	С		8.0	12.0
Distance between grooving	e		23 ± 0.4	31 ± 0.5
	f		14.5 ± 0.8	20.0 ± 1.0
Increased grooving depth	t _{mi}		22.5	31.5
$\alpha 34^{\circ}$ by primitive diameter	dw	/	from 140 to 190	from 224 to 315
38° narrow-section v-belts DIN 7753 part 1			> 190	> 315
α 34° by primitive diameter	dw		from 112 to 190	from 180 to 315
38° classic section v-belts DIN 2215			> 190	> 315
Tolerance for $\alpha = 34^{\circ}-38^{\circ}$			± 1°	± 30'
Pulleys for b2 by		1	29	40
grooving number z		2	52	71
b2 = (z-1) e + 2 f		3	75	102
	F	4	98	133
	Γ	5	121	164
		6	144	195
	Γ	7	167	226
		8	190	257
		9	213	288
		10	236	319
		11	259	350
		12	282	381

Minimum pulley diameter must be respected. Do not use laminated v-belts.

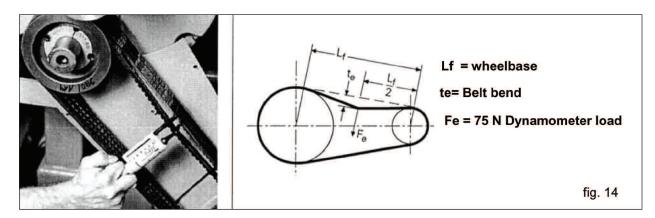
fig. 11

b) Use high performance belts - for example XPB instead of SPB - as a lower quality of belts for the same transmitted power may be necessary and a consequent shorter resulting distance compared to the shaft shoulder (PTO), "a" in fig. 12.

- c) Pull the belts according to manufacturer instructions. Excessive pulling can cause reduced bearing life and wear out the pulley prematurely. Pulling depends on different variables as indicated in point 9.12.
- d) Belt length has a natural tolerance \geq 0.75%. For this reason, the three belts must be purchased as a pair.
- e) Follow the direction of the belt pull as shown in fig. 12; for other needs, contact our **Customer Service Department**.
- f) Take care of the alignment of the driving pulley and driven pulley grooves.


9.12 Definition of Static Pull to Apply on Belts

Static pull depends on:


- a) The wheelbase between the two pulleys (belt length)
- b) The load due to static pull of the belt
- c) The number of belts
- d) The winding angle of the smallest pulley
- e) Average speed
- f) Etc.

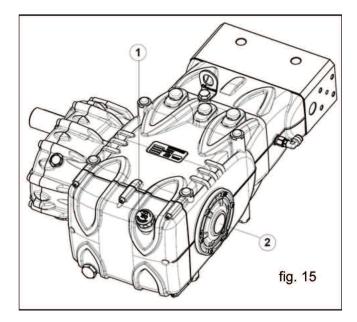
Values of the static pull to be applied can be obtained from the diagram in fig. 13

Conclusion: with a dynamometer, loading the belt branch with 75 N as indicated in fig. 14, a "te" bend of aproximately 10.8 mm is obtained.

Note₁: Unless otherwise stated by the supplier of the belts, control of proper pull and its relative re-tensioning should be performed after no less than 30 minutes of motion necessary for the normal asjustment of the belts. Best performance and durability will be achieved with proper tensioning.

Note₂: In case of necessity or for routine maintenance, never replace a single belt, but the complete set.

10. START-UP AND OPERATION

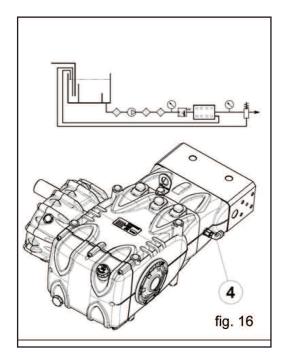

10.1 Preliminary Inspections

Before Start-up Be sure that:

The inlet line is connected and up to pressure (see Chapter 9) the pump must NEVER run dry.

- 1. The inlet line must be perfectly airtight.
- 2. All the On-Off valves between the pump and the feeding source are completely open. The outlet line must discharge freely in order to allow the air in the pump to be expulsed easily, thus facilitating pump priming.
- 3. All fittings and connections must be correctly tightened.
- 4. Coupling tolerances on the pump/transmission axis (half-joint misalignment, Cardan inclination, belt tightening, etc.) must remain within the limits indicated by the transmission Manufacturer.
- 5. The pump's oil level must be verified using the correct dipsticks (position 1, fig 8).

In case the pump has not run for a long period of time, recover the correct operation of the suction valves by opening the three valve-lifting devices (see fig. 9). Be sure to reclose the valves before the pump start-up.


10.2 Start-up

- 1. When starting the pump for the first time, check for the correct direction of rotation.
- 2. The pump must be started off-load.
- 3. Verify correct feeding pressure.
- 4. During operation, check that the rotating speed does not exceed the rated value.
- 5. Before putting the pump under pressure let it run for at least 3 minutes.
- 6. Before stopping the pump, release the pressure by acting on the adjustment valve or on any discharging device.

Ref 300837 Rev.C 04-16 Page 20

10.3 Cooling Circuit Seal Packing

During operation, some water from the cooling circuit seal packings will be discharged from port 1 (fig. 9). The drainage from this circuit must be redirected to the inlet line upstream of the booster pump (fig. 9) or to the collection tank.

11. PREVENTIVE MAINTENANCE

To guarantee pump reliability and efficiency, comply with the maintenance intervals as indicated in the table below.

PREVENTIVE MAINTENANCE							
EVERY 500 HOURS	EVERY 1000 HOURS						
Check oil level	Change oil						
	Check / Replace:* • Valves • Valve seats • Valve springs • Valve guides						
	Check / Replace: • H.P packings • L.P. packings						

* For replacement follow instructions contained in the repair manual.

VK SERIES

12. PUMP STORAGE

12.1 Inactivity for Lengthly Periods

If the pump is started for the first time after a long period of inactivity, before putting it into operation check the oil level, inspect the valves as indicated in Chapter 10, and then follow the prescribed startup procedures.

12.2 Filling the Pump With An Anti-Corrosion Emulsion or Anit-freeze By Using An External Diaphragm Pump As In The Layout Shown in Paragraph 9.6.

- a) Close the filter draining, if open.
- b) Be sure that the connecting hose is clean, spread with grease and connect it to the high pressure outlet port.
- c) Fit a suction hose to the membrane pump. Open the pump suction connection and fit hose between it and the membrane pump.
- d) Fill the container with the solution/emulsion.
- e) Put the free extremeties of the suction line and the high pressure outlet hose inside the container.
- f) Start up the diphragm pump.
- g) Pump the emulsion until it comes out of the high pressure hose.
- h) Continue pumping for at least another minute; if needed, the emulsion can be reinforced by adding, for example, Shell Donax
- i) Stop the pump, remove the hose from the suction connection and close it with a plug.
- j) Remove the hose from the high pressure outlet port. Clean, grease and plug both connections and the hoses.

12.3 Hoses

- a) Before greasing and protecting the hoses according to the previously described procedure, dry the connections using compressed air.
- b) Cover with polyethelene.
- c) Do not wrap them too tightly; be sure there is no bending.

13. PRECAUTIONS AGAINST FREEZING

In areas and periods of the year where there is risk of freezing, follow the instructions indicated in Chapter 12 (see paragraph 12.2).

In the presence of ice, in no case must the pump be started until the entire circuit has been completely thawed out; not complying with this indication may cause serious damage to the pump.

14. WARRANTY TERMS

The pump is guaranteed for a period of 5 years from the delivery date, with the exception of parts subject to wear. In any case, please refer to the contract terms for other warranty conditions. The warranty is void if:

- a) The pump has been used for purposes that differ from that agreed.
- b) The pump has been fit with an electric or diesel engine with performance greater than that indicated in the table.
- c) The required safety devices were un-adjusted or disconnected.
- d) The pump was used with accessories or spare parts not supplied by General Pump.
- e) Damage was caused by:
 - 1) improper use
 - 2) the non-observance of maintenance instructions
 - 3) use not compliant with operating instructions
 - 4) insufficient flow rate
 - 5) faulty installation
 - 6) incorrect positioning or sizing of the hoses
 - 7) non-authorized design changes
 - 8) cavitation

15. TROUBLESHOOTING

The pump does not produce any noise at start-up:

- The pump is not primed and is running dry
- There is no water in the inlet line
- The valves are blocked
- The delivery line is closed and does not allow the air in the pump to be discharged

The pump pulses irregularly (knocking):

Air suction

- Insufficient feeding
- · Bends, elbows, fittings along the suction line obstruct the fluid's passage
- The inlet filter is dirty or too small
- The booster pump, where provided, supplies insufficient pressure or flow rate
- · The pump is not primed due to insufficient head or the delivery line is closed during priming
- The pump is not primed due to valve seizing
- Worn valves
- Worn pressure packings
- · Incorrect operation of the pressure adjustment valve
- Transmission problems

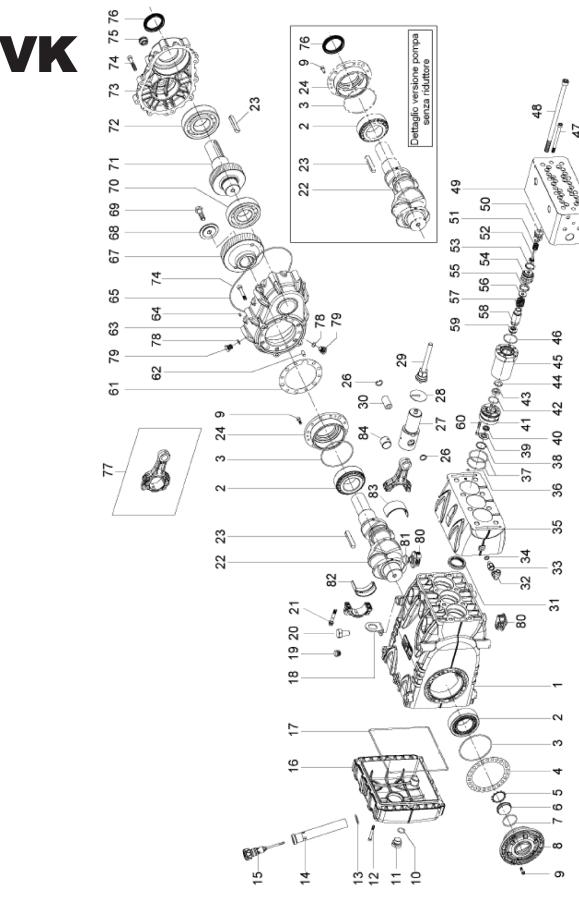
The pump does not deliver the rated flow / is noisy:

- Insufficient feeding (see the causes listed above)
- RPM are less than the rated flow
- · Excessive amount of water by-passed by the pressure adjustment valve
- Worn valves
- Leakage from the pressure packings
- Cavitation due to:
 1) Wrong sizing of the suction hose/ undersized diameters
 - 2) Insufficient flow rate
 - 3) High water temperature

Insufficient pump pressure:

- The nozzle (or has become)too large
- Insufficient RPM
- · Leakage from the pressure packings
- · Incorrect operation of the pressure adjustment valve
- Worn valves

Overheated pump:


- The pump is overloaded (pressure or RPM exceed the rated values)
- Oil level is too low, or the oil is not of a suitable type, indicated in Chapter 7 (see paragraph 7.4)
- · Incorrect alignment of the joint or pulleys
- Excessive inclination of the pump during operation

Pump vibrations or knocking:

- Air suction
- Incorrect operation of the pressure adjustment valve
- Valve malfunction
- Irregular drive transmission motion

16. EXPLODED VIEW AND PARTS LIST

VK SERIES

Item	Part #	Description	QTY.	Item	Part #	Description	QTY.
1	F71010012	Pump Casing	1	45	F71060066	Lining	3
2	F91859000	Tapered Roller Bearing, 50x90x32	2	46	F90370200	O-ring, Ø 38 x 2	3
3	F90391800	O-ring, Ø 91.92x2.62	2	47	F99326100	Screw, M8x100	24
- J	F71220081	Shim Washer, 0.1 mm	1	48	F99455000	Screw, M12x260	8
4	F71220081	Shim Washer, 0.25 mm	1	49	F71127056	Manifold, Ø 12 and 14	1
4			1	50	F36205570	Valve Guide	3
	F71220581	Shim Washer, 0.35 mm		51	F94742300	Spring, Ø 13.9x23	3
5	F90075600	Ring, ZJ45	1	52	F36205666	Valve	3
6	F70211801	Oil Level Indicator	1	53	F93186500	Fitting, Ø 24x29x3.8	3
7	F90387700	O-ring, Ø39.34x2.62	1	- 55	F36205266	Valve Seat, Ø 12	3
8	F71150122	Indicator Side Bearing Cover	1	54	F36210266	Valve Seat, Ø 12	3
9	F99186700	Screw, M16x18	12	55	F93183500	Fitting, Ø 24x29x3.8	
10	F90384100	O-ring, Ø 17.13x2.62	1	55			3
11	F98218300	Plug, Nickel	1	56	F36205366	Flat Valve	3
12	F99196800	Screw, M6x50	8	57	F94751800	Spring, Ø 21.6x37	3
13	F90360400	O-ring, Ø 25.12x1.78	1	58	F71211782	Plunger Bushing, Ø 12	3
14	F72210695	Oil Dipstick Tube	11		F71211882	Plunger Bushing, Ø 14	3
15	F98212000	Plug With Rod, Ø 21. x91	1	59	F90259000	Alt Seal Ring, Ø 12x24x11, H.P.	3
16	F72160022	Cover, Rear	1		F90260600	Alt. Seal Ring, Ø 14x24x11, H.P.	3
17	F90400000	O-ring, Ø215x3	1	60	F99194400	Screw, M6x40	30
18	F71223074	Lifting Bracket	1	61	F72210784	Reduction Gear Box Fitting	1
19	F98206000	Plug, Ø 15	7	62	F97618500	Cylindrical Pin, Ø 8x18	1
20	F99426600	Screw, M12x25		63	F72210820	Reduction Gear Box	1
21	F99313800	Screw, Connecting Rod, M8x1x48	6	64	F97615200	Cylindrical Pin, Ø 5x10	2
22	F71020035	Bend Shaft	1	65	F90394800	O-ring, 209.22 x 2.62	1
22		Tab, 12x8x70	2		F10071335	Ring Gear, Z40-2200, Helical	1
	F91500000			67	F10071235	Ring Gear, Z37-1800, Helical	1
24	F71150022	PTO Side Bearing Cover	1		F10071135	Ring Gear, Z34-1500, Helical	1
26	F90060600	Stop Ring, Ø 20	6	68	F72211055	Ring Gear Fastening Washer	1
27	F71050015	Plunger Guide	3	69	F99430700	Screw, M12x40	1
28	F96714000	Washer, Ø 10x50x1	3	70	F91857700	Ball Bearing, 45x100x25	1
29	F71040709	Plunger Assembly, Ø 12	3		F10071035	Pinion, Z22-2200, Helical	1
20	F71040602	Plunger Assembly, Ø 14	3	71	F10070935	Pinion, Z25-1800, Helical	1
30	F97743000	Pin, Ø20x38	3		F10070635	Pinion, Z27-1500, Helical	1
31	F90167800	Ring, Rad, Ø 38x52,7/8.5	3	72	F91829300	Ball Bearing, 50x100x27	1
32	F96416000	90 degree fitting, Ø 10, Revolving	1	73	F72210920	Reduction Gear Box Cover	1
33	F71223566	Throttle Fitting	1	74	F99314600	Screw, M8x50	16
34	F96710000	Washer, Ø 10x14x1.5, Aluminum	1	75	F97394000	Oil Level Indicator	1
35	F71165020	Spacer for Liner	1	76	F90170000	Rad. Ring, Ø 50x65x8	1
36	F90366300	O-ring, Plunger Assembly, Ø4 x 2	1	70			3
37	F90389100	O-ring, Ø 52.07 x 2.62	6		F71030701	Connecting Rod Assembly	2
38	F90067200	Ring	3	78	F90358500	O-ring, Ø 10.82 x 1.78	
<u> </u>	F71216766	Seal Ring, Ø 12	3	79	F98204700	Plug, Nickel	2
39	F71216866	Seal Ring, Ø 12	3	80	F71225851	Casing Plug	6
\vdash	F90258800		3	81	F71225951	Casing Plug Cap	3
40		Alt. Seal Ring, Ø 12x10x6 L.P.			F90924300	Connecting Rod Head Semi-Bushing - Lower	3
\vdash	F90260400	Alt. Seal Ring, Ø 14x22x6, L.P.	3	82	F90924400	Connecting Rod Head Semi-Bushing - +0.25 Lower	3
41	F71214766	Fitting Support, Ø 12	3		F90924500	Connecting Rod Head Semi-Bushing - =0.50, Lower	3
\vdash	F71214066	Fitting Support, Ø 14	3		F90924000	Connecting Rod Head Semi-Bushing - Upper	3
43	F71211370	Fitting Bushing, Ø 12	3	83	F90924100	Connecting Rod Head Semi-Bushing - +0.25 - Upper	3
	F71211470	Fitting Bushing Ø 14	3		F90924200	Connecting Rod Head Semi-Bushing - +0.50 - Upper	3
44		Anti-extrusing Ring, Ø 12	3	84	F90911000	Connecting Rod Foot Bushing	3
	F71224668	Anti-extrusion Ring, Ø 14	3				
					İ		
					i	1	<u> </u>
							-
\vdash						1	+
							+
\vdash							
		<u> </u>		L		ļ	_

REPAIR KITS

KIT	F2037 (VK12)	F2035 (VK14)	F2038	F2128 (VK12)	F2129 (VK14)	F2110 (VK12)	F2130 (VK14)	F2135	F2154	F2155
NUMBER	Plunger Packing Kit	Plunger Packing Kit	Valve Kit	3, 7, 10, 17, 31,	3, 7, 10, 17, 31,	Valve Kit	Valve Kit	Conn. Rod Kit	Conn. Rod Kit	Conn. Rod Kit
Positions Included	36, 37, 40, 43, 44, 46, 59	36, 37, 40, 43, 44, 46, 59	53, 55	36, 3740, 43, 44,	36, 3740, 43, 44, 46, 53, 55, 59, 61, 65, 76, 78	50, 51, 52, 53, 54, 56, 57	50, 51, 52, 53, 54, 56, 57	82, 83	82, 83	82, 83

17. MAINTENANCE LOG

HOURS & DATE

OIL CHANGE				
GREASE				
PACKING REPLACEMENT				
PLUNGER REPLACEMENT				
VALVE REPLACEMENT				

GP Companies, Inc. 1174 Northland Drive Mendota Heights, MN 55120 Phone: 651.686.2199 Fax: 800.535.1745 www.generalpump.com email: sales@gpcompanies.com

Ref 300837 Rev.C 04-16

Page 26